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Distributed relative localization using the
multi-dimensional weighted centroid

Rosario Aragues1,∗, Antonio González1, Gonzalo López–Nicolás1 and Carlos Sagues1

Abstract—A key problem in multi-agent systems is the dis-
tributed estimation of the localization of agents in a common
reference from relative measurements. Estimations can be re-
ferred to an anchor node or, as we do here, referred to the
weighted centroid of the multi-agent system. We propose a
Jacobi Over–Relaxation method for distributed estimation of
the weighted centroid of the multi-agent system from noisy
relative measurements. Contrary to previous approaches, we
consider relative multi-dimensional measurements with general
covariance matrices not necessarily fully diagonal. We analyze the
method convergence and provide mathematical constraints that
ensure avoiding ringing phenomena. We also prove our weighted
centroid method converges faster than anchor-based solutions.

Index Terms—Distributed Sensor Networks; Noisy Rela-
tive Measurements; Multi–agent Localization; Jacobi Over–
Relaxation; Weighted Centroid

I. INTRODUCTION

Localization is a central task in multi-agent systems. For
example, in order to cooperatively manipulate a load, agents
need to know their positions in a common frame [1]. Agents
usually start at unknown locations, and they can only perceive
nearby agents (neighbors). Each agent combines bearing and
range measurements [2] of the position of its neighbors and
it builds a 2D or 3D representation of the relative positions
of the neighbors in its own local frame (multi–dimensional
relative full-position measurements). This multi–dimensional
sensed data is corrupted with noise, with associated covariance
matrices which are not necessarily fully diagonal, as it is
often assumed by several approaches [3]–[11]. The distributed
localization problem, which often considers stationary agents,
consists of combining these relative measurements to build an
estimate of the agents’ positions in a common frame.

It is well known [3]–[13] that the localization problem can
be solved only up to an additive constant, which is equiv-
alent to representing the agent locations relative to different
reference frames. In order to remove this ambiguity, several
solutions [3], [4], [12], [13] fix an anchor, e.g., the first agent,
which is placed at the origin of the reference frame, and make
the other agents to compute their locations relative to the
position of the anchor. Here, instead, we prefer not fixing any
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gonlopez@unizar.es and C. Sagues csagues@unizar.es
are with DIIS Universidad de Zaragoza and Instituto de Investigación en
Ingenierı́a de Aragón I3A, Spain raragues@unizar.es

anchor, which is also the approach followed in [5], [6], [8]–
[10]. We propose using the weighted centroid of the multi–
agent system as the origin of the reference frame since, as we
will show, this speeds up the process.

We propose using a Jacobi Over–Relaxation (JOR) scheme,
that includes a tuning parameter h. We discuss how to establish
values for the parameter h to ensure that the agent positions
estimated by the distributed localization method converge
asymptotically and smoothly (without ringing) to the same
values as if a centralized unit was used. Remarkably, the
proposed constraints on h do not depend on any global
information on the network topology or on the noise, as
opposed to [5]–[7], [9]–[11].

The main contributions of this paper are: (i) The use of noisy
multi-dimensional relative measurements with covariance ma-
trices not necessarily fully diagonal. (ii) The establishment of
mathematical constraints on the JOR parameter h to avoid
ringing. (iii) The proof of the weighted centroid method
speeding up the convergence, with respect to the anchor-
based case. Compared to our previous work [12] on distributed
localization, here we avoid using any anchors and we use a
JOR scheme instead of the Jacobi methods used in [12]. Thus,
all the analysis and results in Sections IV, V, VI, VII and the
intermediary results in the appendix are novel.

The remaining of this paper is organized as follows. Sec-
tion II reviews the related work. In Section III we define the
notation that will be used in the paper and we define the
localization problem. In Section IV we provide the definition
of the weighted centroid. Section V presents the distributed
algorithm executed by the agents to compute their estimated
positions relative to the weighted centroid. We give the main
result of the paper, that proves the convergence of the dis-
tributed weighted centroid localization method. In Section VI
we discuss the selection of the parameter h to ensure not only
convergence, but also to prevent the estimates from exhibiting
ringing. Section VII formally compares the performance of
the proposed distributed weighted centroid localization method
against anchor based localization methods. In Section VIII we
show numerical examples of the behavior of the method and in
Section IX we provide the conclusions. The Appendix contains
several auxiliary results used in the paper.

II. RELATED WORK

A key problem in multi-agent systems is the distributed
estimation of the localization of agents in a common reference
from relative measurements. Agents usually start at unknown
locations, and they can only take noisy measurements of the
relative positions of nearby agents in their own local frames.
The localization problem, which often considers stationary
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agents, consists of combining these relative measurements to
build an estimate of the agents’ positions in a common frame.

As agents move and their states change, the relative po-
sitions or relative states of nearby agents change accordingly
[14], and it is necessary to take new measurements and update
the current location estimates of the agents. This problem,
known as cooperative localization [15], usually requires the
existence of a good quality initial solution to the localiza-
tion problem, i.e., the one associated to the agents in their
initial positions. In this paper, we consider the localization
problem for stationary agents, which can be used to generate
these initial localization solutions to be used by higher level
methods, such as cooperative localization algorithms, among
others. Here, agents are stationary, they take a single set of
relative measurements of nearby agents at the beginning, and
they combine them to estimate their initial positions.

Several localization algorithms rely on range-only [16]–
[19], or bearing-only [20], [21] relative measurements of
positions. Alternatively, each agent can locally combine its
observations and build an estimate of the relative full-position
of its neighbors. In [2], several methods to combine bearing
and range data to build the relative 2D and 3D full-position
representations are presented. We focus on this last case, in
which agents measure the relative p−dimensional full-position
of their neighbors, e.g., 2D or 3D relative positions, being the
measurements corrupted with noise. This localization problem
can be solved by using linear optimization methods [3]–[13].

Some localization works [22], [23] consider not only the
agents positions, but also their orientations, i.e., they consider
full poses. This problem has also connections with multi-
robot graph–SLAM scenarios where privacy is a concern
[24]–[26]. A robot team has explored an environment, each
robot has acquired a local graph-based map that includes
the robot trajectory, and the goal is that robots fuse their
maps in a distributed way. Robots can measure each other
and exchange data when they are nearby. In order to avoid
exchanging sensitive information (e.g., paths followed by each
robot) that may be sniffed by other agents, robots update their
estimated trajectories using the relative measurements of the
pose of nearby agents. These methods [24]–[26] decouple the
management of poses into two stages. In the first one, only
orientations are taken into account. In the second stage, these
orientations are used to represent the measurements using a
common orientation, and then, position data is used to solve
the full problem. In each stage, linear optimization methods
as the ones considered in [3]–[13] are used.

Thus, the solution presented in this paper can be applied to
scenarios that consider robot poses (orientations and positions)
to e.g., solve a specific stage such as the position computation.
They can also be applied to such cases provided the agents
perform a synchronization [27], [28] to align their orientations,
or they estimate a common orientation for their reference
frames in a first stage, as proposed in [29]. In addition, the
assumption on the relative measurements being expressed in
a common alignment frame can be addressed by equiping
the robots with sensors measuring for instance the north
(compasses or magentometers) [30].

Formation control [28], [31], [32] and localization are

related problems. Although some works discuss the effect of
noise in the final result [28], formation algorithms usually
assume noise–free measurements [31], [32].

From now on, we focus on the distributed localization
from relative full-positions problem considered in this pa-
per: a distributed localization scenario, with stationary agents
that take a single set of measurements of nearby agents.
The relative measurements are noisy, and they represent the
p−dimensional full–position of the neighbors, e.g., 2D or
3D relative positions, being these measurements corrupted
with noises. The problem addressed in this paper is close
to the approaches in [3]–[13], which often rely on linear
methods, such as [33] the Jacobi [3], [4], [12], [13], the Jacobi
Over–Relaxation (JOR) [28], the Successive Over–Relaxation
(SOR) [24]–[26], the Gauss–Seidel (GS), and the Richardson’s
method or gradient–descent strategies [5]–[7], [9]–[11], and
which are also connected to distributed consensus ideas [5]–
[11] and are thus resilient to delays and link failures [3], [5],
[34].

In addition to the linear method used, the solutions can
be classified according to several ideas that we discuss next.
Several methods fix an anchor in the network [3], [4], [12],
[13] and compute the localization taking this anchor as the
origin of the reference frame. The intuition behind anchors
is that it is well known that the relative localization problem
can only be solved up to an additive constant [3]–[13]. This
ambiguity can thus be removed by fixing the position of
one of the agents (the anchor). The placement of the anchor
influences the accuracy of the final results and it is common
to analyze the estimation errors at the agents as a function of
their distances to the anchor [35]. However, it is common to
assume that the first agent is the anchor placed at the origin
of the common reference frame and make the other agents
compute their positions relative to the anchor [3], [13]. Thus,
other works prefer not fixing any anchor [5], [6], [8]–[10] and
compute the agents positions relative to a different coordinate
frame, for instance, the centroid. We propose in this paper a
method that uses the weighted centroid as the reference frame,
and we do not use any anchor since, as we show, this slows
down the full process.

Localization methods can also be classified depending on
their requirements on additionally synchronization strategies,
or on the required knowledge of global data for their adjust-
ment. The inconvenience of SOR [24]–[26] and GS compared
to JOR, Jacobi, Richardson’s or gradient–descent methods
is that they force a specific state update ordering [33], and
thus, they require more sophisticated network synchronization
policies. Thus, it is more interesting to use methods that
do not impose this requirement such as the JOR, Jacobi,
Richardson’s or gradient–descent methods. Solutions based on
the Jacobi [3], [4], [12], [13] require fixing an anchor, but a
benefit of these solutions is that they do not require additional
information for adjusting the algorithm. On the other hand,
the Richardson’s and gradient–descent methods include a
parameter h which, in order to ensure convergence, must be
adjusted using global information on the network topology and
on the noise [5]–[7], [9]–[11], which is a limitation. Instead,
some versions based on the JOR [28] or on gradient–descent
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[8] establish values for the parameter h without knowing
any global information, e.g., 0 < h ≤ 1, which is a strong
advantage, and which is the approach we follow in this paper.

We can further classify the localization methods depending
on whether they consider measurements and states that are
scalar values or multi–dimensional variables. Most of the
works on distributed localization assume scalar states, or fully
diagonal covariance matrices [3]–[11], which is a simplifica-
tion of the problem. In this paper, we consider more realistic
scenarios, where the covariance matrices associated to multi–
dimensional relative measurements are full (instead of fully
diagonal), since each relative measurement may be the result
of fusing different sensory data [2]. As far as we know, only
[12], [13] have addressed multi–dimensional measurements
with full covariance matrices, although in both cases they
involved the use of an anchor agent and the Jacobi method
in some part of the process.

Finally, all the previous works on distributed localization
discuss the asymptotic convergence of the algorithms, but they
do not pay attention to the way in which the solution is
achieved. In some cases, the phenomena of ringing appears
in discrete-time systems [36]. This makes the estimates at
each time step change drastically, making it hard to use these
oscillating estimates within a higher level task. Here, we
propose mathematical constraints on h to avoid ringing.

To sum up, in this paper we propose a relative distributed
localization that does not fix any anchor, and that considers
relative measurements with full covariance matrices. To reach
these goals (no anchor, full covariance matrices), we cope here
with system matrices (Section V, eq. (13)) which do not satisfy
the properties (row–stochastic, non–negative, primitive, a sin-
gle eigenvalue equal to one) used in classical scalar consensus
[28], [37] to establish the convergence for connected graphs.
Thus, we adapt here in a non trivial way several properties
and results that were established for classical scalar consensus.
Here, agents compute their locations relative to a common
reference frame that depends on the weighted centroid of
their initial unknown estimates. We use here a Jacobi Over-
Relaxation (JOR) scheme, which has milder requirements on
the network synchronization policies than, e.g., SOR, but that
requires a nontrivial analysis of its convergence [24], [25].
We compute the parameter h of the JOR to ensure not only
convergence, but also to prevent the estimates from exhibiting
ringing. Moreover, we provide conditions on h that do not
depend on global information, e.g., on the network topology
or on the noise.

III. PRELIMINARIES

We let In be the n×n identity matrix, 0n1×n2
be a n1×n2

matrix with all entries equal to 0, and 1n and 0n be column
vectors with its n entries equal to 1 and to 0. The dimensions
are omitted when they can be easily inferred. The Kronecker
product is denoted by ⊗.

Consider n ∈ N stationary agents. Each agent i ∈
{1, . . . , n} has a p−dimensional state xi ∈ Rp and it observes
the states of a subset of the agents relative to its own state.
This information is represented by the directed sensing graph

G = (V, E), where V = {1, . . . , n} are the agents, and E
contains the m relative measurements, |E| = m. There is an
edge e = (i, j) ∈ E from i to j if node i has a relative
measurement ze ∈ Rp of the state of agent j,

ze = xj − xi + ve, ve ∼ N (0p×p,Σze
) ,

where ve is a Gaussian additive noise. We assume that
if agents i, j measure each other, both measurements are
combined into a single one from, e.g., by averaging the
measurements expressed from i to j.

We let z,v ∈ Rmp and Σz ∈ Rmp×mp contain the
information of all the measurements ze, ve, Σze

, following
some order {1, . . . ,m}, i.e.,

z = (zT1 , . . . , z
T
m)T ,

v = (vT
1 , . . . ,v

T
m)T ,

Σz = blkDiag(Σz1
, . . . ,Σzm

).

We assume that the measurements are independent since
they were acquired individually by the agents, and thus the
covariance matrix Σz is block diagonal. Note that matrix Σz

would be fully diagonal for fully uncorrelated noises, and
Σz = Imp for noise–free data.

Each agent i communicates with both its in and out neigh-
bors in the sensing graph G, and we assume G is weakly
connected (i.e., its undirected version is connected). The out–
edges and in–edges of agent i ∈ V are

E i = {e ∈ E|e = (i, j), j ∈ V}
E i = {e ∈ E|e = (j, i), j ∈ V}.

The incidence matrix A ∈ {0, 1,−1}n×m of G is

Ai,e =

 1, if e ∈ E i
−1, if e ∈ E i
0, otherwise

,∀i ∈ V, e ∈ E . (1)

The estimation from relative measurements problem con-
sists of estimating the states of the n agents using z. Note
that agents are stationary, i.e., xi ∈ Rp is constant, and
agents compute their states using the measurements z they col-
lected initially. Cooperative localization methods [15] instead
recompute the states of the agents as they move, acquiring
new measurements as agents move. Cooperative localization
methods require knowing the initial states of the n agents.
Thus, the estimation from relative measurements problem can
be used for instance to give this initial solution.

It is well known [3]–[5], [8]–[13] that in estimation from
relative measurements problems, solutions can be determined
only up to an additive constant. Usually, one agent a ∈ V ,
e.g., the first one, is taken as an anchor with fixed state, e.g.,
x̂a
a = 0, and the states x̂a

i of all the other agents relative to the
anchor are computed. We call such approaches anchor-based
and we add the superscript a to their associated variables. We
let Va = V \ {a} contain the non-anchor nodes, and Aa ∈
R(n−1)×m be as A in (1) but without the row associated to
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the anchor. The Best Linear Unbiased Estimator [3] for xa
Va

is

x̂a
Va =Σx̂a

Va
ηa, where Σx̂a

Va
= (Υa)

−1
,

ηa = (Aa ⊗ Ip) Σ−1z z, (2)

Υa = (Aa ⊗ Ip) Σ−1z (Aa ⊗ Ip)
T
.

We let x̂a
V ∈ Rnp and Σx̂a

V
∈ Rnp×np include the anchor state,

x̂a
V = (0, (x̂a

Va)T )T , Σx̂a
V

= blkDiag(0,Σx̂a
Va

). (3)

Anchor–based methods make agents compute in a distributed
way a x̂a

Va as in (2) satisfying

Υa x̂a
Va = ηa. (4)

The anchor–free expression is similar, but using the original
A ∈ Rn×m instead of Aa ∈ R(n−1)×m:

Υ x? = η, where η = (A⊗ Ip) Σ−1z z, and

Υ = (A⊗ Ip) Σ−1z (A⊗ Ip)
T
, where (5)

Υ =

 Υ11 . . . Υ1n

...
. . .

...
Υn1 . . . Υnn

 , where, ∀i, j ∈ V :

Υii =
∑

e∈(Ei∪Ei)

Σ−1ze
,

Υij = −Σ−1ze
, if e = (i, j) ∈ E or e = (j, i) ∈ E ,

Υij = 0p×p, otherwise.

This anchor–free expression (5) is more general than (4).
As discussed later in Lemma A.2, vectors x? satisfying (5)
include all anchor–based vectors x̂a

V as in (2)–(4), plus an
additive term, which is equivalent to expressing x̂a

V relative
to a different coordinate frame. The goal is that the agents
compute in a distributed and fast way a vector x? satisfying
(5), as explained next.

IV. WEIGHTED CENTROID REFERENCE FRAME

We begin with the definition of the weighted centroid
representation of the states of the agents.

Definition 4.1 (Weighted Centroid): Given matrix Υ in (5),
we define the weighting matrix w ∈ Rnp×p and weighted
centroid matrix M c

? ∈ Rnp×np, as follows. Note that w is not
a single vector but several.

w = D(1n ⊗ Ip) = [Υ11,Υ22, . . . ,Υnn]
T
,

M c
? = (1n ⊗ Ip)(wT (1n ⊗ Ip))−1wT . (6)

We define the weighted goal estimates x̂c
V as the goal central-

ized estimates in (2)–(3), with the positions expressed relative
to their weighted centroid:

x̂c
V = Πx̂a

V , with Π = Inp −M c
? . (7)

As the following result shows, the weighted centroid repre-
sentation of the goal centralized estimates is unique.

Lemma 4.1 (Weighted goal estimates): Given all possible
anchor agents a, a′, ..., and their associated goal centralized
estimates in (2)–(3), x̂a

V , x̂a′

V , ... obtained by the selection

the anchor a, a′, ..., the weighted goal estimates x̂c
V , x̂c′

V , ...
obtained with (7) are the same:

x̂c
V = Πx̂a

V = x̂c′

V = Πx̂a′

V . (8)

Proof: From Lemma A.2, vectors x? satisfying (5) in-
clude all anchor–based vectors x̂a

V as in (2)–(4), plus an
additive term, which is equivalent to expressing x̂a

V relative
to a different coordinate frame, so that

x̂a
V = x̂a′

V + (1n ⊗ Ip)x̂a
a′ . (9)

Substituting this in (7), we get

x̂c
V = Πx̂a

V = Π(x̂a′

V + (1n ⊗ Ip)x̂a
a′),

= Πx̂a′

V + (Inp −M c
?)(1n ⊗ Ip)x̂a

a′ . (10)

Now we use (6), that gives M c
?(1n ⊗ Ip) = (1n ⊗ Ip), which

combined with (10) gives

x̂c
V = Πx̂a′

V + 0 = x̂c′

V , (11)

concluding the proof.
Figure 3 in Section VIII shows some examples of weighted

goal estimates x̂c
V (Def. 4.1) and of goal centralized estimates

in (2)–(3) (red circles). In a centralized setup, the localization
problem would be solved by compiling the relative measure-
ments, and computing the goal centralized estimates ((2)–(3)),
or the weighted goal estimates x̂c

V , using (7).
In a distributed scenario, as the one considered in this paper,

each agent i ∈ V only knows the relative measurements ze,
Σze associated to its in and out neighbors, e ∈ (E i ∪ E i),
and the estimate of its own position. In addition, each agent
i can only exchange its estimated position with its neighbors.
The goal is that agents obtain an estimated position that con-
verges asymptotically to the same goal centralized estimates
or weighted goal estimates as the ones discussed so far.

In the remaining of the paper, we propose a distributed
algorithm for computing the goal centralized estimates in (2)–
(3), with the positions expressed relative to their weighted
centroid (Def. 4.1), and we discuss its properties in Sections
V, VI and VII.

V. WEIGHTED CENTROID LOCALIZATION

In this section, we present a distributed iterative method
to let each agent i estimate its associated entries within x?

(5). We use a Jacobi Over–Relaxation scheme and discuss the
selection of its parameter h. From all the possible vectors x?,
we prove that the agents’ estimates converge to an expression
that depends on the weighted centroid of the initial estimates.

Matrix Υ in (5) is decomposed into a matrix D with the
p× p blocks in the main diagonal of Υ, and a matrix N with
the remaining elements,

Υ = D −N, with D = blkDiag (Υ11,Υ22, . . . ,Υnn) ,

N =

 N11 . . . N1n

...
. . .

...
Nn1 . . . Nnn

 , where, ∀i, j ∈ V : (12)

Nij =

{
Σ−1ze

if e = (i, j) ∈ E or e = (j, i) ∈ E ,
0 otherwise.
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From this, the JOR system equations for multi–dimensional
noisy centroid–based localization used to compute x? (5) in
a distributed way are:

x(k + 1) = MJOR x(k) + hD−1η, with

MJOR = (1− h)Inp + hD−1N. (13)

Matrix MJOR remains constant during the iterations. The
method is distributed and each agent i runs (13) to estimate its
entries xi(k) ∈ Rp within x(k) using local information and
from its neighbors:

xi(k + 1) = (1− h)xi(k) + hΥ−1ii

∑
e∈Ei

Σ−1ze
ze

−
∑
e∈Ei

Σ−1ze
ze +

∑
e∈(Ei∪Ei)

Σ−1ze
xj(k)

 . (14)

The multi–dimensional noisy centroid–based distributed lo-
calization method (13) has connections with scalar weighted
consensus problems [37], [28]. However, MJOR in (13) does
not satisfy the properties (row-stochastic, non-negative, prim-
itive, a single eigenvalue equal to one) used in classical scalar
consensus [37], [28] to establish the convergence for connected
graphs. We extend several properties from scalar weighted
consensus and we show that algorithm (13) makes the agents
states converge to an expression that depends on weighted-
centroid (Def. 4.1).

Now we present the main result in this section. The proof re-
lies on several intermediary results provided in the Appendix.

Theorem 5.1 (JOR Weighted Centroid iterations): If agents
execute the multi–dimensional noisy centroid–based localiza-
tion method (12)–(13) under a weakly connected graph G, their
estimates asymptotically converge to the optimal estimates
relative to the centroid x̂c

V (Definition 4.1), plus the weighted
centroid of the initial states,

lim
k→∞

x(k) = x̂c
V +M c

?x(0). (15)

Proof: We let e(k) be he error containing the difference
between the agents estimates x(k) and the solution x? as in
(52).

e(k) = x(k)− x?, x(k) = e(k) + x?, (16)

Then, (12)–(13) becomes

e(k + 1) = MJORe(k), e(k) = (MJOR)ke(0). (17)

Using Proposition A.2,

lim
k→∞

e(k) = lim
k→∞

(MJOR)ke(0) = M c
?e(0). (18)

Reversing (16) we get

lim
k→∞

x(k) = M c
?x(0) + Πx?, (19)

with Π as in Definition 4.1 and x? as in (52). Using Lemma
A.2, x? = x̂a

V + (1⊗ Ip)x?
a,

lim
k→∞

x(k) = Mc
?x(0) + Πx̂a

V + Π(1⊗ Ip)x?
a. (20)

Since Π(1 ⊗ Ip) = 0p×p, and x̂c
V = Πx̂a

V (Definition 4.1),
we get (15).

VI. CONDITIONS ON h FOR AVOIDING RINGING

The convergence of the JOR localization method is asymp-
totic (Theorem 5.1). Not only convergence is a necessary re-
quirement in practice, but it is also convenient that localization
estimates evolve smoothly without oscillating behaviors. This
would allow using stable and predictable data in higher level
methods. It is well known that, when the discrete poles of
the system (i.e., the eigenvalues of the system matrix) are
real and negative, the estimates have an oscillatory behavior
(ringing) [36]. An example of a convergent system with this
behavior can be seen in Fig. 1 (left). As far as we know, these
issues associated to the eigenvalues are not usually discussed
in the context of network localization, beyond asymptotic
convergence. This can be alleviated by forcing the system
eigenvalues to be real, strictly positive, and smaller than 1,
as we propose next.
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Fig. 1. Example with 10 agents in a chain graph. Evolution along iterations
of the estimated x−coordinate relative to the weighted centroid of the team.
Top: The ringing oscillatory behavior can be observed for h = 0.99. At
each step, the estimates change their values sharply. Bottom: The ringing
oscillatory behavior is removed with h = 0.49. The estimates converge now
smoothly.

Lemma 6.1: The system matrix MJOR in (13) with 0 <
h < 1/2 and G weakly connected, has p eigenvalues equal to
1, and all its remaining eigenvalues are real, strictly positive,
and smaller than 1.

Proof: The result follows from the proof of Proposi-
tion A.1, using h < 1/2 in (30) to get 0 < λi,r(MJOR) ≤ 1,
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Fig. 2. Left: Initial scenario. Center and Right: Evolution of the estimated x− (in black) and y− coordinates (in red) of the agents positions along 400
iterations (x−axis) when agents run the weighted centroid (Center) and anchor–based (Right) localization methods.
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Fig. 3. Estimated agents positions (blue crosses) after k = 20 (Left), k = 100 (Center) and k = 200 iterations (Right) of the weighted centroid (Top) and
anchor–based (Bottom) localization methods, for the initial scenario in Fig. 2. The red circles represent the goal centralized estimates in (2)–(3), with the
positions expressed relative to their weighted centroid as in (7) (Top), and relative to the anchor agent R1 (Bottom). The green axis represent the frame used
as the origin. In the Right figures, we also display with a green axis the weighted centroid, which is located at position (−4.97,−0.19).

instead of (31).
Observe in Fig. 1 (right) this ringing behavior is removed

with h close to 1/2. Note that the selection of 0 < h < 1/2
does not require knowing global information of the graph.
Additional information could be used to speed up the method.
However, we prefer for generality to use Lemma 6.1 and avoid
requirements on global data.

VII. ANCHOR AND CENTROID–BASED STRATEGIES

Both anchor-based and weighted centroid localization meth-
ods are convergent for connected graphs. However, we demon-
strate next that our proposed weighted centroid approach
converges faster than fixing an anchor node.

Lemma 7.1: Let 0 < h < 1/2 and G be weakly connected.
Let ρ(M) be the spectral radius of a matrix M . The conver-
gence rate of the anchor-based ρ(Ma

JOR) and of the weighted
centroid algorithms ρess(MJOR) = ρ (MJOR −M c

?), with
Ma

JOR, MJOR, M c
? as in (32), (13), (6), satisfy

ρess(MJOR) ≤ ρ(Ma
JOR). (21)

Proof: From Lemma 6.1, and Prop. A.1 and A.2, the
eigenvalues of MJOR are positive, and

ρess(MJOR) = ρ (MJOR −M c
?) = λn−1,p, (22)

with λn−1,p as in (40)–(42). From (34) with 0 < h < 1/2,
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the eigenvalues of Ma
JOR are positive,

and ρ(Ma
JOR) = λan−1,p, (23)

with λan−1,p as in (40). And thus, (21) can be concluded
from (40), (22) and (23).

VIII. SIMULATIONS

Fig. 2 illustrates the difference of performance discussed
in Lemma 7.1. There are 10 agents placed randomly in a 2D
region of 10 × 10 meters. Fig. 2 left: Each agent i gets noisy
measurements (crosses and ellipses) of the relative position
of its out-neighbors j (arrows). The noise covariance matrix
Σze

depends on the relative measurements (ρij , αij in polar
coordinates) between agents i, j, with e = (i, j) as follows:

Σze
= RT

ijdiag(σ2
1 , σ

2
2)Rij ,

where σ1 = 0.15ρij , σ2 = 0.1ρij , are the standard deviations
in the parallel and perpendicular directions of the arrow, and

Rij =

[
cos(αij) sin(αij)
− sin(αij) cos(αij)

]
.

We plot the uncertainty ellipses with the 95% of noisy mea-
surements (±2σ1,±2σ2), centered around the noisy measure-
ment. Circles represent instead the true initial robot positions.
Note that the covariance matrices are not fully diagonal. For
instance, for the measurement between agents i = 5 and j = 2,
we have

Σze
=

[
0.0659 −0.0273
−0.0273 0.0954

]
.

Fig. 2 center: Agents run the distributed weighted centroid
localization method with h = 0.49 in order to avoid ringing
(Lemma 6.1). The estimates converge fast and without exhibit-
ing the ringing oscillatory behavior. Fig. 2 right: The estimated
agent positions when fixing node 1 as an anchor at the (0, 0)
position, with clearly slower convergence than using weighted
centroid approach. Fig. 3 shows the evolution of the estimated
agents positions for the methods in Fig. 2. After few steps, the
estimated positions (blue crosses) obtained with the distributed
weighted centroid localization (Fig. 3, top) are very close to
the goal centralized estimates (red circles). Fig. 3 bottom: after
k = 200 iterations, the estimated agent positions (blue circles)
when fixing node 1 as an anchor at the (0, 0) position, have not
converged yet to the goal centralized estimates (red circles).

IX. CONCLUSIONS

We presented a distributed method that allows a set of
agents to estimate their positions, expressed relative to the
weighted centroid, using noisy relative measurements of the
positions of their neighbors. Our method is based on the Jacobi
Over–Relaxation (JOR), and it includes a tuning parameter
h. A novel feature of our JOR based distributed method is
that relative state measurements can be multidimensional with
covariance matrices not fully diagonal. Thus, our approach is
more flexible and practical, since very often the measurements
are fused from several sensors. We also defined the conditions
that guarantee smoother performance of the estimates. This is

a desirable feature if, for example, the estimates are used in a
higher level task sensitive to oscillating signals. Additionally,
we proved our weighted-centroid method converges faster than
its counterpart based on a fixed anchor.

Proposition A.1 (Eigenvalues of JOR): For weakly con-
nected graphs G, with 0 < h < 1, the JOR system matrix
MJOR in (13) has p eigenvalues equal to 1, and the remaining
eigenvalues are real and have modulus strictly smaller than
one.

Proof: From (12)–(13), MJOR equals

MJOR = Inp − hD−1Υ, (24)

with Υ as in (5). From (5) we have

Υ · (1n ⊗ Ip) = 0np×p, and thus

MJOR · (1n ⊗ Ip) = 1n ⊗ Ip, (25)

then MJOR has at least p eigenvalues equal to one.
Next, we study if the modulus of the remaining eigenvalues

is strictly less than 1. We pay attention to the centroid–based
MJOR system matrix in (13). We first consider its associated
Jacobi matrix D−1N . According to [38, Notation 2.3], which
studies the convergence of block iterative methods, matrix Υ
in (5) is of type Zp

n and also of type Ẑp
n for a connected graph.

Matrix Υ also satisfies [38, Condition (3.2), Proposition 3.1]:

Υii +
1

2

n∑
j 6=i,j=1

(Υij + Υji)
T ≥ 0,∀i ∈ V. (26)

This comes from the fact that, from (5), we have Υji = ΥT
ij

and Υij + ΥT
ji = 2Υij , so that (26) gives

Υii +

n∑
j 6=i,j=1

Υij = 0p×p ≥ 0,∀i ∈ V. (27)

Therefore, according to [38, Proposition 4.6],

ρ(D−1N) ≤ 1, (28)

with Υ, D, and N as in (12).
The eigenvalues of the centroid-based JOR system ma-

trix (13) and of the centroid–based Jacobi matrix D−1N are
related ∀i ∈ V, r = 1, . . . , p by

λi,r(MJOR) = 1− h+ hλi,r(D−1N), (29)

Since h > 0, and using (28), we get:

− h ≤ hλi,r(D−1N) ≤ h,
1− 2h ≤ λi,r(MJOR) ≤ 1− h+ h = 1. (30)

Now, using h < 1, we get that, ∀i ∈ V, r = 1, . . . , p,

−1 < λi,r(MJOR) ≤ 1. (31)

From (31), we discard the existence of eigenvalues equal
to −1. From (25), MJOR has at least p eigenvalues equal
to 1. Next, we prove that exactly p eigenvalues are equal to
1, and all the other eigenvalues are strictly smaller than 1.
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The proof uses results from [38], [12], that refer to anchor–
based methods, together with relations between eigenvalues
of anchor–based and centroid–based systems. We let Ma

JOR,
Υa, Da, Na be as MJOR, Υ, D, N in (12)–(13) but removing
the rows and columns associated to the anchor agent. The
anchor–based JOR system matrix Ma

JOR is related to the
anchor–based Jacobi matrix (Da)−1Na as follows:

Ma
JOR = (1− h)I(n−1)p + h(Da)−1Na, (32)

λai,r(Ma
JOR) = 1− h+ hλai,r((Da)−1Na),

∀i = 1, . . . , (n − 1), r = 1, . . . , p. The convergence of the
anchor-based Jacobi method was proved in [12, Theorem 2],
using results from [38], and concluding that, for connected
graphs, ρ((Da)−1Na) < 1. Besides, since h > 0,

−h < hλai,r((Da)−1Na) < h. (33)

Following a similar reasoning as in (28)–(31), we conclude
that, for connected graphs,

− 1 < 1− 2h < λai,r(Ma
JOR) < 1, (34)

∀i = 1, . . . , (n− 1), r = 1, . . . , p.
Now, we use a simplified notation for the eigenvalues of

matrices Ma
JOR and MJOR. We define ∀r = 1, . . . , p,

λi,r = λi,r(MJOR), with i = 1, . . . , n, and

λai,r = λai,r(Ma
JOR), with i = 1, . . . , n− 1. (35)

We consider these eigenvalues are sorted as follows:

λ1,1 ≤ . . . λ1,p ≤ · · · ≤ λn,1 ≤ · · · ≤ λn,p, (36)
λa1,1 ≤ . . . λa1,p ≤ · · · ≤ λan−1,1 ≤ · · · ≤ λan−1,p.

From (31), (34), for connected graphs:

−1 < λ1,1 ≤ · · · ≤ · · · ≤ λn−1,p ≤ 1, and

λn,1 = · · · = λn,p = 1,

−1 < λa1,1 ≤ . . . λan−1,p < 1. (37)

Now we relate the eigenvalues λn−1,p and λan−1,p to prove
that λn−1,p < 1 for connected graphs. We apply results
of symmetric matrices. Although matrix MJOR in (13) is
not symmetric, according to [39, Definition 1.3.1], MJOR is
similar to the following symmetric matrix:

MJOR v D1/2MJORD
−1/2

= (1− h)Inp + hD−1/2ND−1/2. (38)

Ma
JOR in (32) is also similar to a symmetric matrix,

Ma
JOR v (1− h)I(n−1)p + h(Da)−1/2Na(Da)−1/2.

Thus, according to [39, Corollary 1.3.4], MJOR and Ma
JOR

have the same eigenvalues as their symmetric counterparts.
Thus, the eigenvalues are real. We can now use [39, Theorem
4.3.15], which applies to Hermitian matrices, using our non-
symmetric matrices MJOR and Ma

JOR, which states

λi,r ≤ λai,r ≤ λi+1,r, (39)

∀i = 1, . . . , (n − 1), and r = 1, . . . , p. In particular, for i =
n− 1 and r = p,

λn−1,p ≤ λan−1,p ≤ λn,p. (40)

Since, for connected graphs λan−1,p < 1 (37), then

λn−1,p < 1, (41)

which, together with (31) gives

−1 < λ1,1 ≤ · · · ≤ λn−1,p < 1, (42)

i.e., the remaining eigenvalues of MJOR have modulus strictly
smaller than 1, concluding the proof.

Lemma A.1: The weighting matrix in Definition 4.1 are left
eigenvectors of the MJOR system matrix (13), associated to
the eigenvalue 1,

wTMJOR = wT . (43)

Proof: With MJOR (13) as in (24), we have

wTMJOR = wT − hwTD−1Υ

= wT − h(1n ⊗ Ip)T Υ. (44)

Since Υ is symmetric, the term (1n ⊗ Ip)
T

Υ vanishes as
in (25), and we finally get (43).

Now, we focus on the system matrix, and show the conver-
gence of its powers. The following proposition is used in the
proof of Theorem 5.1.

Proposition A.2 (Convergence of the powers of the JOR
matrix): Let MJOR be the system matrix associated to the
JOR iterations as in (13), associated to a weakly connected
graph G. Let M c

? be as in Definition 4.1, and let 0 < h < 1.
Then,

lim
k→∞

(MJOR)k = M c
? . (45)

Proof: As discussed after (37), the system matrix
MJOR is similar ( [39, Definition 1.3.1]) to a matrix
D1/2MJORD

−1/2 which is symmetric, and thus ( [39, Theo-
rem 4.1.5]) diagonalizable. Thus, ( [39, Observation 1.3.2],
[39, Theorem 1.3.7]), the system matrix MJOR in (13) is
diagonalizable.

Let w be the as in Def. 4.1. We let VL and VR be
respectively left and right eigenvectors of MJOR,

V T
L =


wT

V T
Ln−1,p

...
V T
L1,1

 =

[
wT

V̄ T
L

]
,

VR =
[

(1n ⊗ Ip) VRn−1,p
. . . VR1,1

]
=
[

(1n ⊗ Ip) V̄R
]
. (46)

From Lemma A.1 and eq. (25), w and (1n ⊗ Ip) are left and
right eigenvectors of MJOR associated to the eigenvalue 1.
VL1,1 , VL1,p . . . , VLn−1,p have been chosen to be orthogonal to
w, and VR1,1 , VR1,p . . . , VRn−1,p are orthogonal to (1n ⊗ Ip).
Note that [Vn,1, . . . , Vn,p] = w are not necessarily orthogonal
among them.
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Let λM be the diagonal matrix with the eigenvalues of
MJOR. Then,

V T
L MJOR = λMV

T
L , and MJORVR = VRλM ,

(MJOR)k = VRλ
k
MV

−1
R = (V T

L )−1λkMV
T
L ,

(MJOR)2k = VRλ
k
M (V T

L VR)−1λkMV
T
L . (47)

We will focus first on the term (V T
L VR)−1. From [39, Theorem

1.4.7],

V T
Li,r

VRj,s
= 0, for all λi,r(MJOR) 6= λj,s(MJOR),

and thus

V T
L VR =

[
wT (1n ⊗ Ip) 0

0 V̄ T
L V̄R

]
, and (48)

(V T
L VR)−1 =

[
(wT (1n ⊗ Ip))−1 0

0 (V̄ T
L V̄R)−1

]
.

Now we pay attention to λM . From Proposition A.1, for a
connected graph,

λn,1(MJOR) = . . . , λn,p(MJOR) = 1, (49)
− 1 < λ1,1(MJOR) ≤ · · · ≤ λn−1,p(MJOR) < 1,

Thus, λM = diag(λn,p(MJOR), . . . , λ1,1(MJOR)), satisfies:

lim
k→∞

λkM =

[
Ip 0
0 0

]
. (50)

Therefore, using (48),

lim
k→∞

(MJOR)k = lim
k→∞

(MJOR)2k

= lim
k→∞

VRλ
k
M (V T

L VR)−1λkMV
T
L

= VR

[
Ip 0
0 0

]
(V T

L VR)−1
[

Ip 0
0 0

]
V T
L

= [(1n ⊗ Ip),0](V T
L VR)−1

[
wT

0

]
= (1n ⊗ Ip)(wT (1n ⊗ Ip))−1wT , (51)

as M c
? in Definition 4.1, giving (45).

Next, we show that all the solutions of (12)–(13) are the goal
centralized estimates x̂a

V (2)–(3), up to an additive term, which
is equivalent to expressing x̂a

V relative to a different coordinate
frame. This result is used in the proof of Theorem 5.1.

Lemma A.2 (Solutions of the JOR equations): The vectors
x? satisfying (12)–(13), i.e.,

x? = MJORx
? + hD1η, are given by (52)
x? = x̂a

V + (1n ⊗ Ip)x?
a (53)

for all possible x?
a ∈ Rp, with x̂a

V as in (3).
Proof: Since all x? satisfying (52) also satisfy (5), we

focus on (5). The relation between the incidence matrices,
with and without the anchor row is

A =

[
−1T

n−1
In−1

]
Aa, Aa =

[
0n−1 In−1

]
A.

Υx? = η (5) can be expressed, distinguishing between the
elements of x? = [x?

a, (x
?
Va)T ]T ,

(A⊗ Ip)Σ−1z (Aa ⊗ Ip)T (x?
Va − (1n−1 ⊗ Ip)x?

a) = η,

giving two rows of equations. The first row is redundant (it
equals the second row, multiplied by −1T

n−1⊗ Ip). Using Υa,
ηa (2), the second row is:

Υa(x?
Va − (1n−1 ⊗ Ip)x?

a) = ηa. (54)

Since Υax̂a
Va = ηa (4), then all x? satisfy

x̂a
Va = x?

Va − (1n−1 ⊗ Ip)x?
a, (55)

and x̂a
V = x? − (1n ⊗ Ip)x?

a as in (53).
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